Environmental Issues

- Inadequate Mainline Acceleration at Exit 6 SB On-Ramp
 - The short acceleration lane (300 ft, R = 150 ft, 25 mph) in conjunction with the SB reverse curve compromises safety at this merge condition.

- Inadequate Ramp Management at Exit 6 SB On-Ramp
 - Accidents frequently occur at this short weave section (approximately 450 ft). Substandard horizontal and vertical geometry forces the peak hour on-ramp traffic to stop at the ramp nose and wait for a gap in the mainline traffic. This leads to the mainline exiting traffic slowing (20± mph) to avoid conflict with on-ramp traffic.

- Inadequate Mainline Acceleration at Exit 6 NB Off-Ramp
 - Horizontal curves are being driven at higher than 55 mph design speed in the outside through lane.

- Inadequate Ramp Management at Exit 6 NB Off-Ramp
 - The NB off-ramp routinely queues back onto the mainline shoulder. The mainline curvature forces vehicles on the off-ramp to merge into the traffic on the mainline at distances of 50 mph over a short merge area with Front Street (200 ft, yield control). Traffic operations are poor with the mainline. During peak hour congestion, on-ramp vehicles are sometimes forced to stop to wait for a gap in the mainline flow.

- Inadequate Mainline Acceleration at Exit 7 NB On-Ramp
 - The NB off-ramp has a 700 ft long, 4% downgrade. Vehicles accessing the NB on-ramp from the west side of I-293 must travel the circuitous Amoskeag Circle, encumbered by several congested weave/merge maneuvers. The 900 ft NB on-ramp approaches I-293 on a 3.3% downgrade; the acceleration lane is only 300 ft which forces ramp traffic to immediately merge with 65 mph mainline speeds, resulting in difficult and dangerous maneuvers.

- Inadequate Design at Exit 7 NB Off-Ramp
 - Traffic exits from the off-ramp traveling at approximately 50 mph over a short merge area with Front Street. Traffic operations are poor with the mainline. With the Merrimack River on the east and the floodplain wetlands associated with Black Brook on the west, improvements in this vicinity will need to be designed carefully to avoid impacts to the former landfill. Areas adjacent to the Merrimack River may be deemed archaeologically sensitive as well.

- Inadequate Design at Exit 7 NB Off-Ramp
 - The proximity of the Interstate to the condominium developments at Riverfront Drive raises the possibility that noise barriers would need to be included. The proximity and access needs of the Manchester Community College, the residents of Washington Park (potential noise barriers), and the Manchester 16099 business as well as the residents of Washington Park (potential noise barriers) as well as the residents of Washington Park (potential noise barriers), and the Manchester Community College properties within the corridor have potential sources of soil and groundwater pollution. With the corridor's long history of industrial and commercial activity, several properties within the corridor have potential sources of soil and groundwater pollution.

- Inadequate Design at Exit 7 NB Off-Ramp
 - Environmental Issues
 - Stream
 - Public Water Supply
 - Former Manchester Landfill
 - Freshwater Wetlands
 - Potential Oil and Hazardous Material Concerns
 - Potential Threatened/Endangered Species Habitat
 - Historic Mill Buildings
 - Renewable Energy Sources
 - Geotechnical and Groundwater Issues

- Inadequate Design at Exit 7 NB Off-Ramp
 - The proximity of the Interstate to the condominium developments at Riverfront Drive raises the possibility that noise barriers would need to be included. The proximity and access needs of the Manchester Community College, the residents of Washington Park (potential noise barriers), and the Manchester 16099 business as well as the residents of Washington Park (potential noise barriers), and the Manchester Community College properties within the corridor have potential sources of soil and groundwater pollution. With the corridor's long history of industrial and commercial activity, several properties within the corridor have potential sources of soil and groundwater pollution.